Category J.- Carburadores

X.- Carburadores

Es un sistema mecánico de alimentación de combustible empleado en los motores de combustión interna. Su principio de funcionamiento se basa en la succión creada dentro de un cilindro por el paso del aire, este efecto es aprovechado para halar el combustible y mezclarlo con el aire en las proporciones adecuadas para el funcionamiento del motor.

Mec 84Mec 85

El funcionamiento de carburador se basa en que toda corriente de aire que pasa rozando un orificio provoca en el una succión, que será mayor cuanto mas alta sea la velocidad del aire, para aumentar mas si cabe la velocidad del aire se crea un estrechamiento llamado “difusor o venturi” para aumentar la depresión y así facilitar la succión de combustible. El diámetro del difusor (D) guarda relación directa con el calibre (chicleur) del surtidor y con la cilindrada del motor. La zona de mayor succión de combustible no esta situada justo en el máximo estrechamiento del difusor sino D/3 debajo del mismo, en este punto se coloca el orificio del surtidor.
Es muy importante mantener constante el nivel de combustible en la cuba para ello existe el llamado “nivel de guarda” (d) que tiene por objeto evitar que el combustible se derrame por el surtidor con el movimiento e inclinación del vehículo.

Clasificación de los carburadores:

Según la posición del difusor

  • Vertical ascendente: actualmente no se usa por que presenta problemas de arranque en frío y en el pleno llenado de los gases.
  • Vertical descendente: actualmente el mas usado, facilita el llenado por el efecto de la fuerza de la gravedad.
  • Horizontal o inclinado: se utiliza cuando hay problemas de espacio (altura en el vano motor)

Mec 86

Según la forma y la disposición de sus elementos constructivos

  • Carburadores de difusor fijo (la gran mayoría).
  • Carburadores de difusor variable (motocicletas principalmente).
  • Carburadores dobles (motores de altas prestaciones).
  • Carburadores de doble cuerpo (para motores de gran cilindrada).

Mec 87Mec 88Mec 89Mec 90

Difusor Fijo  Difusor Variable   Doble Entrada    Doble Cuerpo

Partes del Carburador

Existen carburadores de muchas formas y tamano, pero en sentido general todos poseen las mismas areas de trabajo con diferentes configuraciones, dependiendo del fabricante.

  • Cuba del carburador: tiene como misión mantener constante el nivel de combustible a la salida del surtidor. Esta constituida por un depósito situado en el cuerpo del carburador. Al depósito llega combustible bombeado por la bomba de combustible y entra a través de una pequeña malla de filtrado  y una válvula de paso , accionada en su apertura o cierre por una boya o flotador. La misión de la boya es mantener constante el nivel del combustible 1 a 3 mm por debajo de la boca de salida del surtidor. Este nivel recibe el nombre de nivel de guarda y tiene por objeto evitar que el combustible se derrame por el movimiento e inclinación del vehículo.
    La regulación de entrada de combustible en la cuba consiste en una válvula que tiene una aguja, unida a la boya por medio de un muelle intermedio, la cual cierra el paso del combustible obligada por la acción de la boya. Cuando baja el nivel de combustible cede el muelle y se abre el paso al combustible y abre o cierra el paso del mismo, por el efecto de flotamiento de la boya en el liquido combustible.
  • Surtidor: consiste en un tubo calibrado, situado en el interior de la canalización de aire del carburador, tiene su boca de salida a la altura del difusor o venturi (estrechamiento). Por su parte inferior va unido a la cuba, de la cual recibe combustible hasta el nivel establecido por le principio de vasos comunicantes.
    A la salida de la cuba va montado un calibre o epita, cuyo paso de combustible, rigurosamente calibrado y de gran precisión, guarda relación directa con el difusor adecuado para cada tipo de motor. Tiene la misión de dosificar la cantidad de combustible que puede salir por el surtidor en función de la depresión creada en el difusor.
  • Colector o canalización de aire y difusor (venturi): el colector de aire forma parte del cuerpo del carburador y va unido por un lado al colector de admisión del motor y por el otro al filtro del aire. En el colector va situado el difusor o venturi que es simplemente un estrechamiento cuya misión es aumentar la velocidad del aire (sin aumentar el caudal) que pasa por esa zona y obtener así la depresión necesaria para que afluya el combustible por el surtidor. Este estrechamiento no tiene que tener aristas ni vértices agudos para evitar zonas de choque y formación de remolinos al pasar el aire.
    El diámetro mínimo o estrechamiento máximo del difusor es convenientemente estudiado al diseñar un carburador, ya que guarda relación directa con el calibre (chicleur) del surtidor para obtener la dosificación correcta de la mezcla. Asimismo, la forma y dimensiones de los conos de entrada y salida de aire (como se ve en la figura inferior) guardan una cierta relación con las dimensiones del colector. Se ha demostrado experimentalmente que el mayor rendimiento del difusor se obtiene con un ángulo de 30º para el cono de entrada y un ángulo de 7º para el cono de salida.
    Otra característica que se ha demostrado experimentalmente es que la mayor depresión y succión de combustible no coincide con el máximo estrechamiento del difusor sino un poco desplazada hacia la salida del difusor y cuya distancia seria 1/3 del diámetro de máximo estrechamiento. Por la tanto la boca del surtidor tendrá que coincidir con esta zona de máxima depresión (succión).
  • Válvula de mariposa: sirve para regular el paso del aire y por lo tanto de la mezcla aire-combustible y con ello el llenado de los cilindros. Se acciona por el pedal del acelerador a través de un cable de tracción que une el pedal con el carburador.

Componentes de un carburador

Para poder conseguir unas dosificaciones de mezcla adaptadas a todas las condiciones de funcionamiento del motor, ademas del carburador elemental necesitamos unos dispositivos para la corrección automática de las mezclas, como son:

  • Un sistema de funcionamiento para marcha normal, constituido por el carburador elemental (ya estudiado), adecuando la dosificación de mezcla en sus calibres a una dosificación teórica de de 1/15.
  • Un circuito que proporciona la cantidad de combustible necesario para el funcionamiento del motor a bajas revoluciones (ralentí).
  • Un sistema automático corrector de mezclas, formado por el circuito compensador de aire, para que a bajas y altas revoluciones del motor la dosificación de la mezcla se mantenga igual a la dosificación teórica.
  • Un circuito economizador de combustible, para adecuar la riqueza de la mezcla a una dosificación de máximo rendimiento, con independencia de la carga de los cilindros.
  • Un circuito enriquecedor de mezcla (bomba de aceleración), para casos críticos de funcionamiento a máxima potencia.
  • Un dispositivo para el arranque del motor en frío.

Circuito de ralentí
Es un circuito derivado o auxiliar del circuito principal (carburador elemental). Su misión es proporcionar el caudal de mezcla necesario para vencer las resistencias pasivas del motor (resistencias debidas a rozamientos internos del motor así como los órganos que lo acompañan como: alternador, servodirección, etc.). El funcionamiento del circuito de ralentí se mantendrá hasta que entre en funcionamiento el circuito principal (carburador elemental). El circuito de ralentí funciona entre 700 y 900 r.p.m. del motor.

Constitución
Consiste en un circuito auxiliar (1) que alimenta a los cilindros del motor por debajo de la mariposa de gases (2). Este circuito toma aire de la zona alta del difusor a través de un calibre de aire (3) y succiona el combustible de un surtidor (4) que esta alimentado por la cuba situada en paralelo con el surtidor principal (5). El caudal de salida se regula por medio del calibre (6). La riqueza de la mezcla emulsionada es regulada por medio de un tornillo de estrangulación (7) que suele denominar en muchos carburadores con la letra “W”.

 

Funcionamiento
Cuando arrancamos el motor el motor sube hasta las 700 – 900 r.p.m., la mariposa de gases esta prácticamente cerrada. La depresión que crean los cilindros en su movimiento de admisión no se transmite al difusor debido a la posición de la mariposa, por lo que el circuito principal no funciona. Sin embargo la gran depresión que existe debajo de la mariposa de gases, si se transmite por el circuito auxiliar (1) al exterior a través del cono del tornillo de regulación (7). La depresión se transmite por el circuito auxiliar hasta el calibre de aire (3) y succiona combustible del surtidor (4), procedente de la cuba, que se mezcla con el aire exterior. La mezcla pasa a través del tornillo de regulación (7) hacia los cilindros y se mezcla con el poco aire que deja pasa la mariposa de gases por el espacio anular (8) que queda entre ella y el cuerpo del colector de aire.

Cuando regulamos el ralentí actuamos sobre dos variables:

  • Regulación de la riqueza de mezcla: se regula con el tornillo (7), “W” se le llama en muchos manuales, con este tornillo estrangulando mas o menos la depresión transmitida a la zona alta del difusor. Cuanto mayor es la apertura del tornillo, mejor se transmite la depresión existente por debajo de la mariposa de gases y, por tanto, mayor es la velocidad del aire a su paso por el conducto (1) y, en consecuencia, también lo es la cantidad de combustible succionada del surtidor (4).
  • Regulación del caudal de la mezcla: El caudal de la mezcla que llega a los cilindros, y por tanto la velocidad de giro en el motor a ralentí, se regula por medio de la mariposa de gases, abriendo mas o menos el paso anular de la misma en el colector de admisión. Ambos reglajes (caudal de aire en la mariposa y riqueza de la mezcla en el circuito auxiliar) deben estar perfectamente combinados, ya que una mayor apertura de mariposa trae consigo una mayor aportación de aire adicional y, por tanto, un empobrecimiento de la mezcla. Esto puede hacer que el motor se pare por falta de combustible. Por esta razón se debe adecuar, en función de esa velocidad de régimen, la riqueza de mezcla por medio del tornillo “W”.

Sistema automático corrector de mezcla (compensador)
En el estudio del carburador elemental se vio que a grandes velocidades y aumento de numero de revoluciones del motor, el enriquecimiento de la mezcla aumentaba innecesariamente, aumentando por tanto el gasto de combustible. Para frenar el gasto de combustible en esos momentos. el mismo aire de aspiración que circula a gran velocidad se encargara de frenar la salida de combustible por el surtidor.

Corrector de mezcla por compensación en el surtidor principal
Este sistema consiste en que en el surtidor principal (5) se introduce un tubito llamado pozo compensador o emulsionador (2), con varios orificios a distintas alturas, y que comunica en su parte superior con el colector de admisión por medio de orificio calibrado (4), llamado soplador.
Cuando el motor funciona a régimen normal, el calibre o chiclé principal (1) proporciona un caudal de combustible necesario para el funcionamiento del motor dentro de la dosificación teórica, por lo que el pozo compensador se mantiene se mantiene lleno hasta el nivel establecido y con todos los orificios del tubo compensador tapados.
Cuando la depresión en el surtidor aumenta, debido al mayor numero de revoluciones del motor, la succión de combustible es mayor y arrastra mayor cantidad de combustible del que deja pasar el calibre (1), con lo cual el nivel del surtidor baja. Al quedar libres los orificios del tubo emulsionador (2), se establece una corriente de aire que entra por el calibre de aire (4) y sale por los orificios destapados. Esta corriente de aire se mezcla con el combustible que sale por el surtidor y proporciona, de esta forma, un caudal de combustible rebajado a la corriente de aire que pasa por el difusor.
Cuanto mayor sea el numero de revoluciones del motor, mayor será la depresión y descenso del nivel del pozo, con lo que al destaparse mayor numero de orificios la cantidad de aire que entra por ellos es mayor y, por tanto, la cantidad de combustible que sale por el surtidor se empobrece en la en la misma proporción.

Bomba de aceleración
Cuando se pisa el pedal del acelerador con decisión para conseguir una aceleración rápida, por ejemplo: para hacer adelantamientos o subir cuestas, se precisa de un dispositivo en el carburador que enriquezca la mezcla de forma inmediata. Al acelerar de forma decidida, la mariposa de gases se abre de golpe, pero la mezcla no se enriquece de inmediato ya que, por efecto de inercia, el combustible tarda mas en llegar al surtidor y, como el aire reacciona al instante, la mezcla se empobrece momentáneamente. Para evitar este inconveniente se instala en el carburador un circuito de sobrealimentación, cuya misión es proporcionar una cantidad adicional de combustible al circuito principal, con objeto de enriquecer momentáneamente la mezcla y obtener la potencia máxima instantánea del motor, hasta el momento en que actúe el enriquecedor de mezcla.

Se diferencia varios tipos de bombas de aceleración:

  • Bomba de aceleración de membrana: esta constituida por un tubo inyector de combustible (8), con su boca de salida en el interior del colector de aire, comunicado con la cuba de donde toma combustible, a través de una válvula antirretorno (2). De aquí pasa al interior de la cámara de la bomba donde esta la membrana (1) que es accionada por la palanca articulada (6). La bomba aspira combustible de la cuba cuando es empujada hacia la derecha por el muelle (3). Cuando se pisa el acelerador se transmite el movimiento de apertura de la mariposa a través de la varilla de mando (4), está, a su vez, empuja la palanca articulada (6) hacia a la izquierda, moviendo también la membrana (1) que empuja bombeando el combustible a través de la válvula antirretorno (7) hacia el tubo inyector de combustible (8). Con esto se inyecta combustible extra en le colector de aire para enriquecer la mezcla en momentos en se solicita máxima potencia al motor.
    Como se puede observar, la inyección de combustible es momentánea, pues al pisar el acelerador solo se produce una inyección de combustible. Al dejar de acelerar, la membrana (1) retrocede y aspira combustible de la cuba para llenar nuevamente la cámara de la bomba. Así queda preparada para la próxima inyección de combustible.
  • Bomba de aceleración de émbolo: muy parecida a la anterior, en este caso utiliza un émbolo (4), que movido también por la mariposa de gases aspira combustible a través de una válvula antirretorno (5) para llenar su cilindro o cámara de bombeo, cuando el embolo (4) es empujado hacia abajo por la palanca de mando (1), se bombea el combustible a través de la válvula antirretorno de salida (6) hacia el tubo inyector situado en el colector de aire.

Dispositivos de arranque en frío
Cuando el motor esta frío, el combustible que se suministra al motor por parte del carburador se condensa en las paredes de los colectores, por lo que el cilindro no le llega apenas combustible. Si a esto se añade la escasa succión que provocan los pistones cuando el motor de explosión es movido por el de arranque, tendremos una gran dificultad para conseguir que el motor de explosión se ponga en marcha. Para asegurar el arranque en frío se dispone de un sistema que aumenta la riqueza de la mezcla lo suficiente (r = 1/4), compensando así las perdidas de combustible por condensación en las paredes.
El sistema de arranque en frío se le llama comúnmente “estrangulador” o bien “starter”.

  • Estrangulador automático: en este dispositivo el accionamiento de la mariposa estranguladora se realiza de manera automática sin intervención del conductor. También dentro de la denominación “starter” esta el sistema que prescinde de la mariposa estranguladora y se sustituye por un circuito auxiliar de alimentación para arranque en frío.
    En los sistemas que utilizan válvula estranguladora se utiliza un muelle de lamina bimetalica que, al contraerse por el frío, cierra mas o menos la mariposa. Esta se abre por dilatación del muelle, cuando el motor ha alcanzado su temperatura de régimen.
    La mariposa estranguladora, a su vez, va unida a una válvula que actúa en función de la depresión creada por los cilindros debajo de la mariposa de gases. Esta válvula abre progresivamente la mariposa de arranque en frío, a medida que la depresión es mayor, y permite un mayor paso de aire para compensar la riqueza de la mezcla, cuando el motor se revoluciona.
Read More